Orbiter v2 turning

The true story of the Orbiter v2.0

In this story you can read about how I designed the Orbiter v2.0, full with detailed technical description, principle theories and some intrigues we faced along the way.

There are many misconceptions about what makes an extruder design great, I'm positive about that reading this story will help everyone get a better feeling on what to really focus on, and see behind advertising data like a pro!

I started the design of the Orbiter v2.0 is the summer of 2020. The Orbiter v1.0 and v1.5 where already pretty mature designs at that point but both had a major drawback in my eyes. Both uses standard on the shelf available components. On one hand this is great, makes them a very nice DIY project but in the same times comes with the compromises and drawbacks of the standard components which weren’t specifically designed for the Orbiter extruder. For me the Orbiter v1.0 was mainly test vehicles to prove the concept itself. 

To the disappointment of many, the Orbiter v2.0 is not a DIY project anymore. It was redesigned completely from scratch, with custom made parts to leave behind the drawbacks of the on the shelf components.

The main re-design targets for the Orbiter v2.0 where: 

  • More compact and less weight 

  • Better fit to delta printers – lightweight extruder for delta printers without limiting print space

  • Metal filament exit guide – for perfect flexible and abrasive filament printing experience

  • Increase extrusion force and maximum acceleration.

To reach these goals almost every aspect of the design was re-imagined and redesigned from scratch, you can read about each step in the next sections.

  New filament drive gears

Read more

First step to achieve the compactness was to redesign the drive gears. 

I decided to keep the same diameter but reduce as much as possible its length. I designed a new gear with 10mm length instead of 15mm. 

Weight and length reduction of 33% in the same time great! Well not exactly . Gave it to manufacturing and spur gear tooth cutting tool was cutting into the filament tooths as well, “great design” but no tool to manufacture it. Therefore, I increased the distance in between by 1mm ending up with 11mm long drive gearset.

Jason ordered first samples from Phaetus, they were working just great. 

Living by the rule of Jason to support the original creators he insisted to have the gears manufactured by Bondtech. I was not so sure about ordering components from “competitors”, but hey let’s give them a chance, LDO also supplies them motors for the LGX and BMG so why not.

Orbiter 2 gears comparison

Received the first samples from Bondtech…oh boy disappointed I was…way worse compared to Phaetus gears. Again, Jason insisted to give them a chance to correct the mistakes, in the end we are in the development phase not everything goes smooth from the beginning. Since Bondtech has a long history to make very good quality gears I assumed they will nail it by their first shoot. It wasn’t the case. 

We scheduled a meeting with Bondtech to discuss the problems we see and solutions to fix them. 

I have to admit I was positively impressed by their willingness to collaborate and the openness they have shown. They were really hands on and immediately made corrections / adjustment of their machines and sent a new set of samples. And yeah, second time Bondtech nailed it perfectly. 

For the best grip the tooths are extremely sharp, about 40 microns width at the top.

You might remember Bondtech claims their gears surface is hardened and they last longer. 

I can confirm this. Overall, the extrusion and filament grip performance of the samples received from Phaetus and Bondtech were similar. One plus to Bondtech for the harder surface which increases lifetime. 

You can see the scratch test result, left Bondtech and right the Phaetus gears.


I have seen new “RNC Nano Coated Gear” advertised on Aliexpress, even if some say its authorized Orbiter v1.5 version, I was not involved in that I have not received nor tested any samples I do not know if it’s any better or worse.

From I read in the literature both hardening processes reaches similar surface hardening of over HRC60.

I have to admit they are looking cool :).

  Gears Diameter

When I started the design of the first Orbiter extruder, I chose the bigger 12mm instead of the most common 8mm drive gears. Even if this ad a bit more weight I considered the advantages given by the better grip outweighs the disadvantage of 10-20 grams additional weight.

Let’s look into the details!

Next picture shows the contact area VS pinching depth of the driver gears for 8mm diameter used in the standard BMG style extruders, 12mm diameter used in the Orbiter (also Bondtech QR) and the 18mm diameter used in the Bondtech LGX. 

Note the effective diameter of the filament path is smaller by ~0.6mm.

The data is summarized in the next table, out of the calculations the contact area increase is roughly 25% more for each.


Now why is that important?

When the extruder pushes with high force the filament plastically deforms under the high pressure. This leads to under extrusion at higher print speeds. Eventually if the backpressure is high enough the filament is grinded or stepper skips. With more tooth coming into contact with filament, it can be pushed with a higher force before it gets plastically deformed and grinded.

This effect is worse for softer materials like HIPS, ABS, ASA or Polypropylene.

This picture shows extrusion performance comparison between 8mm and 12mm drive gears using ASA, tested using Dragon HF hotend with standard plated copper 0.4mm nozzle @250°C.


At high nozzle pressure the filament is either grinded or the stepper motor skips depends which one gives up first. 

The Orbiter extruder uses 12mm gears, in all my tests the stepper started skipping first, which is a good sign because it means the gears have the exact amount of filament grip, we need. Of course, even bigger drive gears would slightly lower filament deformation and more precise extrusion in the expense of increased weight, drive gears being made of heavy steel. 

Overall, I think the short gears of Orbiter 2.0 is the best weight (10g) / performance ratio. Bigger gear diameter will not improve much since the limit with 12mm gears is the stepper power itself.

Full test comparison results between 8mm and 12mm drive gears you can see below. In all cases the 12mm drive gears gave better extrusion consistency and lower extrusion errors.

The tests were performed using Phaetus Dragon HF hotend with 0.4mm standard plated copper nozzle.

  Housing and latch

Read more

I had four main goals with the new housing design.

  1. Flip the drive gears, the filament path is moved closer to the stepper, this makes the Orbiter v2.0 to perfectly fit for delta printers.

  2. Align the fixing screw positions with the filament exit path. This is a must to have no twisting & tilting forces acting over the extruder and extruder mount by hotend pressure change during printing. 

  4. Adjust assembly screws positions for easier access.

  3. The design should look very cool.

To reach my goals I had to start from scratch. Flipped the gears and rotated the stepper motor for additional 10° for a better clearance towards fixing screws.

After a few weeks and tests I finalized the first design version and sent it for manufacturing.

Surprise 😊 the design I’ve made was not manufacturable.

There was no possibility to make a mold for the new housing. Only 3D printing option was possible. Jason was on the opinion to better change the design and make it moldable, this offers better quality and higher temperature rating.

Luckily the Orbiter user group has many experts in different fields including molding technologies. 

Orbiter 2.1

With the help or Yves Fractal from Fractal Engineering we identified the issues and made a plan for a design correction. I’ve implemented all the changes and via Jason from LDO I sent the design back for manufacturing (same manufacturer who made the molds for the Orbiter v1.5).

Surprise again – “the design is to complex and we cannot make a mold for it”

Jason sent the design to more experienced mold manufacturer, this time they advised for some further minor changes and with that they have manufactured the mold for the Orbiter v2.0 housing and latch.

As usually surprises do not end here as I like to say “some can clone faster than I can design”

Shortly before the release of the Orbiter v2.0 release I have received a message from a well known reseller an manufacturer of 3D printer parts:

“We have also made your 2.0 design, and x% of future sales will be sponsored to develop new products for you.”

Cannot say I was not surprised, asked them if they have collaborated with LDO upon this design. They said yes this are just pictures of LDO samples they received…pictures my as..

orbiter2 for comparison
253146887_1001375024054374_2633728399359462801_n (1)

In reality the first company (Formbot Vivedino) who declined to make the Orbiter v2.0 housing actually have made the molds based on early version of the design (as far as I can tell). If you take a close look, you can see the mold contact points are in different position compared to the mold we made together with LDO. Plus you can clearly see some warping effects on the surface of the extruder.

This is not the way I collaborate! I’m not selling my approval for a design for x% just so they can mark it genuine and boost their selling. Especially since I have no clear picture how they got the design files and have zero clue what and how they implemented the design. Never tested and never seen their design in real life.

  The stepper

Read more

This section is a bit more technical I’ll try to be easy for everyone’s understanding.

The first motor I used to test the Orbiter concept was a Wantai 36HS2418 stepper, actually that motor with a T10 spur gear inspired me the possibility of using planetary gear reducer in an extruder.

After I published the Orbiter v1.0 files, the Voron design team asked Jason from LDO to make a better alternative. They have made the LDO-36STH17-1004AHG high temperature stepper which had similar performance but less weight. 

LDO-36STH17-1004AHG - optimized for low speed => high inductance (6mH) and for fast current decay => high phase resistance (10).

At that time everybody was on the opinion that an extruder stepper must have high inductance and resistance. Higher inductance to improve torque at low-speed range the extruder operates and higher resistance for a faster current decay time which helps in faster extruder reaction.  

Well, partially true 😊

The high phase resistance is only important for slow decay operation modes of the stepper driver. Basically, it uses the phase resistance to consume the energy stored in the windings inductance.

All new driver chips includes fast and mixed decay modes.


Slow decay mode means when the driver wants to reduce motor current it short circuits the phases. The current decays with a time constant defined by:


Fast decay mode basically means that the driver reverses the voltage applied to the motor phase during the current decay time. This way the current changes much faster and the value of the phase resistance does not matter anymore.

A drawback of the fast decay mode is higher current ripple in the motor.


To overcome this negative effect, the best choice is to use mixed decay mode. The driver applies slow of fast decay mode depending how fast the current needs to change in order to construct a sinusoidal shaped phase current. In short words slow decay on the rising edge, top and bottom areas of the sinewave and fast decay on the falling edge.  

A huge disadvantage of the high phase resistance is higher power loss.

The electrical power loss of a stepper motor is:


With the small stepper motor the actual limit is not the phase current but the motor temperature.

As many users have experienced on SLS printed Orbiter v1.0, a slight misconfiguration of the LDO-36STH17-1004AHG current, lead to a full meltdown due to high stepper temperature and low heat deflection temperature of the Nylon PA12 SLS printed parts. Same issue using LDO-36STH20-0504AHG (8.5mH & 13.5Ω).

Since we learned phase resistance is not really needed due to mixed decay modes all new drivers have, lead to a couple of questions:

-  Our current motors (36STH17-1004AHG and 36STH20-504AHG) are rated to 1A but we can use them only up to 0.35A without complete meltdown – what if we reduce resistance and increase current, aiming for the same motor temperature (about 70°C) do we get improved motor torque?

-     Reducing motor resistance, we also reduce the number of turns in the winding and its inductance which leads to reduced torque – so what is the best compromise of resistance VS number of turns and resulted torque in real printing scenarios?

-     Could we get better torque curve at low speeds using 0.9° steppers?

In the beginning of 2021 with Jason from LDO we started to investigate. They made several winding combinations and step angle versions. They did some torque curve performance analyses as well. 

Maybe you have seen such graphs already. 

Then I realized those curves say nothing about reality.


Here is why:

torque curve

Let’s consider a dragon HF hotend which tops out at about 25-45mm3, depending what filament and temperature you use. OK let’s consider 45 mm3. We know the diameter of the drive gears 12mm and the gear ratio of the planetary gearbox is 7.5:1.

Out of this we can calculate stepper RPM VS flow. And stepper RPM VS print speed if we define layer width and height. Next chart shows print speed vs stepper RPM considering layer width of 0.48mm and height of H0.25mm


Did you notice? The first stepper torque chart RPM range is between 400-2800PPS which means RPM range 120-840? And we top out the dragon HF considering ridiculously high flow of 45mm3 at about ~260RPM which means ~400mm/s print speed (W0.48/H0.25)? In reality Dragon HF is more like 30 mm3 which means max RPM of 175 (250mm/s W0.48/H0.25). So, we talk about the first two dots on the regular stepper torque performance charts.

In reality mostly we do not print so fast and torque data for print speeds below 175mm/s is not even on the chart.

Based on this I asked LDO to repeat the test at lower speeds as well, here is the result, nevertheless I decided to evaluate the steppers torque performance in a different way using real printing scenarios. 

stepper @ low speed 2

The test I came up with is very simple:

- Make a mark on the filament @ 305mm before the extruder. Command extrusion of 300mm and measure the remaining distance;

- Repeat the test with several extrusion speeds;

- Use same setup filament and temperature for each stepper evaluation;

- For a meaningful comparison between the steppers I adjusted the current for each stepper motor under test to have about ~3.5W electrical power loss, reaching ~70°C.

Next chart presents the performances of the motors and variants we have evaluated. 

The test was performed using Orbiter v2.0 + Dragon HF with 0.4mm standard plated copper nozzle, PLA @ 220°C.

Apparently, the winner configuration would be a stepper motor with very low resistance and inductance 1.6Ω & 1mH. Well things are not that simple as it looks like.

Because our stepper motor operates at low speeds, we have to consider quantization error of stepper drivers. I know it sounds sci-fi but is not that hard to understand.

Stepper driver regulates the motor correct via controlling the voltage it applies to the motor phases. As the stepper speed increases the back EMF voltage increases as well, so to keep the motor current the stepper driver increases the phase voltage amplitude. This is the reason beyond a certain speed the stepper loose torque. Increasing motor supply voltage expands the stepper speed range.

Now the applied phase voltage amplitude has a finite granularity we call quantum q or resolution. This is the lowest output voltage change the stepper driver can produce. 

Stepper drivers being digital circuits the lowest voltage step it can produce depends on the battery voltage level and on how many bits the sine generator operates. This formula defines the amplitude of a quantum q.  where Vm is the supply voltage (24Vdc) n – number of bits the stepper driver operates which is usually 8.


The sinewave phase voltages and currents are generated using a quantized signal, which means the voltage is increased and decreased to form a close to sinusoidal shape as shown in this figure. The amount of increase and decrease of the phase voltage cannot be smaller than one bit resolution of the driver, one quantum q.

qunatization error

Now having 8 bits (most common resolution of stepper drivers in 3D printers) to generate a sinewave from a 24V motor supply voltage we have the minimum voltage step about 94mV. Next table shows what current step this means for different steppers and how many steps are used to generate a sinusoidal shaped current at low speed.

motors quanta

To have smooth and noiseless control we need as many steps used for the sinewave generation. In case of the 1.6Ω stepper we can see that only 25 steps out of 255 are used in full current and 12 out of 255 at half of the motor current. Therefore, I have chosen the 2.4Ω version (LDO-36STH20-1004AHG) for a lower quantization error. With this approach even stepper drivers with lower performance can drive the Orbiter extruder with excellent performance. 

  Gearbox & gear Ratio

Read more

Every good preforming extruder uses some type of speed reducer. This is because stepper motors do not have enough torque especially at low speeds to push filament with high enough extrusion force. 

There are lots of discussions about which gear ratio is the best, some say 3:1 some 5:1, 30:1, Orbiter has 7.5:1…let me say, all assumptions are completely wrong, forget about gear ratio! 

What matters is the resulting steps/mm, how many steps are converted into 1mm of linear motion. Higher the step/mm ratio results in higher torque / extrusion force but the maximum acceleration is reduced. There is a trade-off between extrusion force and maximum acceleration. 

The sweet spot for Nema17 pancakes used in most extruders is about 400steps/mm. The smaller 36mm round Nema 14 stepper has about half of the torque, therefore the sweet spot is around 700steps/mm (micro-stepping set to 16). See next chart for steps/mm VS resulted extrusion force and max acceleration for different stepper currents (calculated using LDO-36STH20-1004AHT stepper performance). Please note the acceleration is just an indicative value because it depends a lot on friction in the filament path, backpressure of the nozzle, how much weight / filament spool the extruder has to pull.

Having the drive gears with 12mm in diameter the gear ratio needed for 700 steps/mm is ~7.5:1. With this setup we can have good extrusion force and good acceleration, above 8000mm/s2

There are several ways to implement a speed reducer gearbox. Most commonly used is a single stage spur gear reducer. Like the 3:1 gear in the BMG style extruders or 5:1 of the Sherpa mini etc.

The gear ratio needed for the Orbiter extruder can be achieved by several reducer topology, let’s take a look of the pros and cons of each from an extruder performance perspective. 


From this analysis point of view the best solution for a compact extruder design using 36mm round Nema14 stepper is a single stage planetary reducer design.

Backlash – worse backlash we have using dual stage spur gears. This is because the first stage backlash is multiplied with the second stage reducing factor. Best in class would be the cycloidal reducer manufactured with very high precision. Single stage planetary gearboxes are not with zero but very low backlash.

You might think backlash matters for an extruder design. Well, the truth is that as long it's low enough it affects nothing. The backlash affects only retraction behavior and ads up to the retraction distance. So as long as its lower than the retraction distance the printer needs it will affect nothing. Even for dual stage spur gears the backlash do not account for more than 0.1 - 0.2mm.

The measured backlash of the Orbiter v2.0 is ~0.06mm.

Note: if you set to high pressure advance causing retraction movements, high backlash can cause nonlinear behavior of the pressure advance. I would disregard this fact since a good PA calibration should not lead to retraction during print movements.

Ease of manufacturability and sensitivity to tolerance - Spur gears are known to be easily manufacturable. Planetary gearset is made out of spur gears. Worm gears have to be very precise otherwise will show inconsistent extrusion artefacts. Cycloidal gears are the worse from this point of view, they have to be manufactured very precise otherwise it will produce small output shaft speed variation (wobble) which can be seen as inconsistent extrusion artefacts. 

Occupied space – best in class is worm gear reducer, the others solutions are roughly similar.

Complexity – Lowest complexity we have for worm gears, and dual stage spur gears. Planetary reducer is a little more complex. Most complex is the cycloidal reducer with double disks.

Efficiency – best efficiency we have from planetary and two stage spur gear reducers. Worm gears are known for prone efficiency. In certain applications cycloidal reducers are very efficient, in case of a compact extruder design with a simple cycloidal design the efficiency is affected by the many friction contact points between the moving and stationary parts.

Back-drivable – from my point of view, this is one of the most important characteristics which influences the extruder performance. Worm and cycloidal reducers are not back-drivable therefore pressure in the nozzle cannot be used to accelerate retraction. On the contrary planetary and spur gear-based reducers are back-drivable and the retraction can be accelerated twice as fast,  considerable reducing stringing behavior and increases extruder responsiveness.

Lifetime – Worm gears are among the worse, they being so compact the forces acting upon the gear tooths are the highest, this is made even worse by the higher gear ratio they usually are designed for. Best in class would be cycloidal drives, known to be very long lasting due to their rolling friction like rotation. Second best is planetary reducer, the forces are shared between the planet gears (three planets in the Orbiter means three times lower forces and wear for each spur gear tooths).

Unlike other single or double spur gear based extruders with the Orbiter planetary reducer solution we never had or been reported any defects with grinded planetary gears. This proves also the high reliability of planetary reducer solution.  

Note: Single stage spur gear reduction was not included into this comparison since it would not fit in the given space.

  Filament exit guide

Read more

One of the weaknesses of the Orbiter v1.5 is the plastic filament exit guide and its distance towards the drive gears. This highly affects extruding performance of TPU. It was a result of the mold manufacturing possibilities of the v1.5 housing.

Best material for the exit guide would be stainless steel, this has high wear resistance against abrasive filaments.

With this solution the filament path is very restricted and the filament has nowhere to go but into the hotend.

This also means manual change of filament is slightly more difficult. I recommend to use automatic filament load and unload by using macros triggered manually or via the filament sensor add-on. 

I personally open the latch only in case of filament jam.

filament exit
Orbiter filament alignment

  Retaining tension screw

Read more

Many users complained that they lose the spring and the small washer from the tension screw, including myself.

Together with LDO we decided to do something about it and came up with a new tension screw assembly design with retaining feature as some of our users suggested.

The picture shows the new design, we designed a new custom-made screw and adjustment knob. The knob width is increased for easier adjustment and manufactured out of aluminum for low weight.


  Final words

We put all we learned about extruders into this design over the past years. I’m really thankful for the great collaboration with LDO Motors and Bondtech, without them this project would not exist. 

Last but not least thanks to all of you, 3D printing community, users of Orbiter extruder. My sincere hope this story helped everyone at least a little to understand better what really matters for a great extruder design.

The Orbiter project grew a lot in the last two years. As usual every seller wanna get in, flooding the market with lower quality clones. I felt always sorry for exited guys sharing their new toy and seeing its a clone most of the time without them even knowing it. 

To combat clone industry we have registered the Orbiter as trademark of LDO in China. We cannot stop cloners but we can stop them using the Orbiter name, I assure you we will. 

...I can assure you this is not the last story of the Orbiter extruder family 😊...